
BE3010 Final Project
Rohan Chhaya, Victoria Curry, Elena Grajales, Kalen Truong

12 December 2022

Request For Application to Monitor Blood Glucose Levels to Prevent Nocturnal Hypoglycemia

INTRODUCTION

The NIH has requested a device that keeps diabetic patients' blood glucose levels above
hypoglycemic rates, which is typically around 0.7 g/L, while they sleep. Given that the CDC
estimates that over 37 million Americans, or 1 in 10, have diabetes, and 96 million Americans, or
1 in 3, have prediabetes, it is of utmost importance to develop a device that can help diabetic
patients maintain homeostasis. Furthermore, there is immense need for monitoring and
regulation during sleep specifically given that over half of severe episodes of hypoglycemia
occur during sleep.

The device ought to be stable, since an unstable system could result in an unbounded increase in
glucose provided and significantly hurt patients. It should also help patients maintain a proper,
non-hypoglycemic blood glucose levels and reach a given concentration (for example, 2 g/L).
The device should also be self-adaptable to a variety of patients, since diabetic patients often
have different backgrounds and lifestyles that may affect the risk of hypoglycemia and vary the
initial conditions (ex. alcohol consumption, exercising, skipping meals, etc).

Throughout the development of this system, all group members worked together directly to
determine relationships, plan and troubleshoot code, plan approaches, address limitations,
research options, and complete algebra/calculus. Elena and Kalen directly typed the majority of
the planned code as discussions occurred. Rohan and Victoria used the pictures generated from
the code output to create the report itself. Kalen was responsible for proofreading and source
citation generations.

ANALYSIS

H(s) = Y(S)/Q(S) = (s + 𝜶)/(s2 + 𝜶s + 𝜼s + 𝜼𝜶 + 𝜸𝝱) (1)

Equation 1 is the transfer function for a sleeping-state–and thus assumed
zero-state–patient with the input of glucose injection, q(t) (g / L*hr), and output of blood
glucose level, y(t) (g/L). This was determined through the given differential equations and hard
coded with symbolic variables into MATLAB in line 20 (Supplementary Materials).

For part b, a ‘for’ loop was used to index through the number of patients, replacing the
symbolic variables with the corresponding patient values, which were given and pre-established
in code lines 11-14. Each consequent equation was then plotted on subplots with axis values set
to encompass the major transfer function peaks.

These subplots were generated using a continuous-time transfer function model from
MATLAB. The ‘pzplot’ and ‘pzoptions’ from code lines 45 and 52 are part of MATLAB’s tf

stability analysis function
collection, and they coded the
finding and plotting of the zeros,
poles, and ROC for equation 1.8:

This situation from figure 3
continues to have the patients
sleeping, which means we were
able to use zero-state assumptions
when solving. For development of
the plots, we relayed the given
differential equations to the code,
took their Laplace Transforms, and
created preset symbolic variables
for alpha, beta, gamma, and eta in
lines 68-78. Following this, we
substituted in the actual given
patient values for the symbolic

variables using the subs function in MATLAB. We were then able to create subplots of y(t), the
levels of glucose in the patients' blood, over 8 hours.

Given the basic differential equations that model the insulin and glucose level in the body, as
well as pumped changes to these levels, our team used Laplacian techniques to find the transfer

function of the system and ultimately
model blood glucose using MATLAB.
After spending time researching ways
to create the desired control system, we
learned about and decided to use a
modified version of the
proportional-integral-derivative (PID)
controller. PID controllers calculate a
“delta” between the desired value and
the measured value, and then use
proportional, derivative, and integral
terms to drive the system toward that
desired value. Tuning these terms
allows the controller to respond in a
wide range of systems. For this
application, the integral term was
dropped by weighing it to zero, and a
“PD2” controller with only

proportionality and derivative constants (Kp and Kd, respectively) was used. This was due to the
need only for proportional
amplification and the approach
of a steady-state limit. Kp gives
the proportional, constant gain
needed to increase glucose
concentration to above
hypoglycemic levels, and Kd
eliminates the oscillation about
the desired glucose
concentration observed in
MATLAB plots for higher
values of Kp by acting as a
dampener on overall system
change. This elimination of
oscillation allowed for system
stabilization approximating the
step function, with a horizontal
asymptote at the goal glucose

concentration.

For implementation of the PD controller and completion of parts e and f specifically, it was
essential to determine set inputs and outputs. After some struggles with overcomplicating the
system, we realized that we could set
our feedback system with input of our
goal glucose level, which we set to be
over .7 g/L at 2 g/L because is was
within the .5 to 3.5 g/L range listed as
possible initial glucose levels and was
well above the level for
hypoglycemia. The system then had a
summation with the goal glucose
level as the positive input and current
glucose level as the negative input.
The absolute value of this subtraction
was taken and set as the time
dependent error level, or the amount
of glucose that would need to be
injected. This was inputted to the PD
system and the system output
considered q(t). In Laplace space,

goal Y(S) was the input, and the absolute value of Yg(S) (goal value) minus Y(S) was multiplied
by the Laplace Transform of the PD constants equation to give an overall output equation that

could be solved for Q(S) and
Y(S). These were both then
Inverse Laplace Transformed
and plotted with patient
variables inputted. In the
code, PD constant values
(selected through plotting),
the variable for the initial
glucose level, and the goal
glucose level were
established in lines 116-121.
Following this, a plot over 8
hours was initiated, and the
determined Y(S) and Q(S)
were hard coded. In lines 131
and 132, their inverse
Laplace Transforms were
taken and code to plot these
MATLAB-determined

expressions follows.

Part f differs from part e in that it adds a random initial glucose value. To approach this, we ran
multiple simulations which were used to create 10 different initial glucose concentrations
between .5 and 3.5 g/L (code lines 151-153). Following this adjustment, the code approach
remained the same as it was in part e, though 10 trials were plotted with variables pre-set for
only patient 1, rather than singular trials of multiple patients. This lack of necessary changes
indicated that our controller was already able to adapt to varying initial glucose levels with high
levels of success in achieving eventual goal levels of glucose. Though, this could not have been
said during our first iterations of system development. We struggled a bit with how to set this up,
and we ultimately removed our assumption of zero-state. Thus, we made the system set to vary
in part e and just entered the known values as patients were set to be sleeping through that
portion. Though we initially solved through all of the algebra considering only the sleep/zero
state assumptions, changing this and re-solving helped in the long run due to the new system’s
being usable in part e and useful for f and g.

While we got a valid control system that keeps patients alive, it wasn’t all smooth sailing. Given
only 2 differential equations and the desire to isolate x(t), y(t), p(t), and q(t) meant falling into
loops where we ended up plugging an equation into itself and getting the same output. This is
when we had to take a step back, draw out the system to fully understand the mechanisms, and

figure out which terms are true inputs and which are not. Overall, though, the application of
controllers and feedback for biomonitoring was really interesting, especially given how complex
a glucose-insulin relationship can be. The concepts we discussed in class, like drawing feedback
systems, solving differential equations, completing Laplace and Inverse Laplace Transforms, and
using various transfer functions based on the control mechanism proved to be essential.

In part H, we adapt our model to a less
responsive glucose pump that either be
ON (at 50 gL/h) or OFF (0 gL/h).
Ultimately, the crude nature of this
pump means it will have to be turned
ON if glucose drops too low and OFF
if glucose runs too high, leading to
oscillations in a set window. This
window is within the acceptable
gluose range for patients, meaning our
system will not result in
hypoglycemia. However, the glucose
level does not settle into a single value
and changes over the course of the
night, which may cause issues
depending on sleep time, whether or

not they wake up in the night, and other medical factors. In some patients, Ceriello et al (2008)
explains how oscillatory glucose can be more damaging in Type II diabetics than a constant
hyperglycemic/hypoglycemic level, meaning while our system fulfills the criteria of keeping
pateints within the range, the use of this less expensive pump may not be ideal in the field

In part I, p(t) changes from p(t) = 0 to p(t) = 2.5.
This alters our Y(S) and corresponding y(t)
equations we found and used in parts f and g.
The Laplace transform gives us P(S) = 2.5 / s,
which can be fed into our Y(S). The resultant
system does reach stability and the patient
glucose level settles at the desired amount after
~2 hours, indicating the controller has the ability
to satisfy these conditions . The glucose
injection required is higher than in previous
analyses, but this makes sense since insulin
injection rate (p(t)) is nonzero and requires more
glucose to “counteract.”

CONCLUSION

The creation of a control system to monitor glucose levels proved to be a more difficult
task than initially expected and required the use of Laplace transforms, algebraic analysis, and
PID control systems. By applying transformations to time-based equations into the complex
frequency domain, differential equations that model human bodily systems can be controlled in a
way that is stable, reaches a desired output in a variety of situations (ex. with and without an
insulin pump), and allows for a variety of patients to be assisted with this device. This plays into
a larger theme where complex mathematical processes can be applied for signal and system
analysis in the context of biological signals and systems, including blood sugar, neurological
systems, cardiac systems, and much more.

Future work may involve modifying the system to allow for the inexpensive pump in part
h to create stable conditions, work more directly with insulin concentrations, and find the limits
of patient parameters that the system applies to in order to prevent health issues down the line.

Works Cited

Centers for Disease Control and Prevention. (2022, January 24). The facts, stats, and impacts of
diabetes. Centers for Disease Control and Prevention. Retrieved December 12, 2022,
from
https://www.cdc.gov/diabetes/library/spotlights/diabetes-facts-stats.html#:~:text=37.3%2
0million%20Americans%E2%80%94about%201,t%20know%20they%20have%20it.

Ceriello, A., Esposito, K., Piconi, L., Ihnat, M. A., Thorpe, J. E., Testa, R., Boemi, M., &
Giugliano, D. (2008). Oscillating glucose is more deleterious to endothelial function and
oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes,
57(5), 1349–1354. https://doi.org/10.2337/db08-0063

Johns Hopkins University. (2021, August 8). Hypoglycemia: Nocturnal. Hypoglycemia:
Nocturnal | Johns Hopkins Medicine. Retrieved December 12, 2022, from
https://www.hopkinsmedicine.org/health/conditions-and-diseases/diabetes/hypoglycemia-
nocturnal#:~:text=When%20blood%20glucose%20levels%20fall,occur%20at%20night%
20during%20sleep.

Pacheco, D. (2022, April 1). Sleep & glucose: How blood sugar can affect rest. Sleep
Foundation. Retrieved December 12, 2022, from
https://www.sleepfoundation.org/physical-health/sleep-and-blood-glucose-levels

The PID Controller & Theory explained. National Instruments. (n.d.). Retrieved December 12,
2022, from
https://www.ni.com/en-us/innovations/white-papers/06/pid-theory-explained.html

Supplementary Material: MATLAB Code

1. %Final Project.m
2.
3. clear; clc; close all;
4.
5. %Part A
6.
7. %All patients
8.
9. numPatients = 4; %number of patients
10.
11. a = [2 0.8 0.7 0.9]; %Alpha
12. b = [0.00 0.01 0.00 0.00]; %Beta
13. g = [0.10 0.05 0.15 0.4]; %Gamma
14. e = [0.6 0.8 0.1 1.2]; %Eta
15.
16. syms p(t) x(t) y(t) q(t) s alpha beta gamma eta %initiate symbolic

variables
17.
18. assume([p(t) x(t) y(t) q(t) t] > 0) %assume all values are positive
19.
20. h_LT = (s + alpha)/(s^2 + alpha*s + eta*s + eta*alpha + gamma*beta);

%H(s) derivation
21.
22. %% Part B
23. for i = 1:numPatients
24.
25. w = linspace(-2.5,2.5,2000); %relavent frequency ranges
26.
27. h_s = (s + a(i))/(s^2 + a(i)*s + e(i)*s + e(i)*a(i) +

g(i)*b(i));%H(s) with patient constants added
28.
29. %create plots
30. subplot(2,2,i);
31. plot(w,abs(subs(h_s,s,w)));
32. xlim([-2.5 2.5]);
33. sgtitle('Transfer Function');
34. subtitle(sprintf('Patient %d', i));
35. ylabel('H(j\omega)');
36.
37. end
38.
39. %% Part C
40. for i = 1:numPatients
41.

42. sys = tf([1 a(i)], [1 (a(i)+e(i)) (e(i)*a(i) + g(i)*b(i))]);
%transfer function representation

43.
44. %pole-zero plots
45. opt = pzoptions;
46. opt.Title.String = (sprintf('Patient %d', i));
47. opt.Title.FontSize = 11;
48. opt.XLabel.String = 'Re(s)';
49. opt.YLabel.String = 'Im(s)';
50. opt.Xlim = [-2.5 2.5];
51. sgtitle('Pole-Zero Plots and Region of Convergence');
52. subplot(2,2,i);
53. graph = pzplot(sys, opt);
54.
55. end
56.
57. %% Part D
58.
59. %Initial conditions:
60. pval = 0;
61. xval = 0.01; %U/L
62. yval = 1; %g/L
63.
64. %Part d.
65. %Plot y(t) from t = 0, 8 grams/L
66. %8 Hours, (t = 8)
67.
68. %Declare differential equations.
69. dx = diff(x, t);
70. dy = diff(y, t);
71.
72. eqn1 = dx == p - alpha*x + beta*y;
73. eqn2 = dy == q - gamma*x - eta*y;
74.
75. eqn1LT = laplace(eqn1, t, s);
76. eqn2LT = laplace(eqn2, t, s);
77.
78. syms x_LT p_LT q_LT y_LT h_LT
79.
80.
81. eqn1LT = subs(eqn1LT, [laplace(x, t, s), laplace(p,t,s), laplace(y,

t, s), x(0)], ...
82. [x_LT pval y_LT xval]);
83.
84. eqn2LT = subs(eqn2LT, [laplace(y, t, s), laplace(q,t,s), laplace(x,

t, s), y(0)], ...
85. [y_LT 0 x_LT yval]);

86.
87. eqns = [eqn1LT eqn2LT];
88. vars = [x_LT y_LT];
89. [x_LT, y_LT] = solve(eqns, vars);
90.
91. yt = ilaplace(y_LT);
92. ytsol = simplify(yt);
93.
94. numPatients = 4;
95.
96. vars = [alpha beta gamma eta];
97. time = linspace(0, 8, 1000);
98.
99. for i = 1:numPatients
100. values = [a(i) b(i) g(i) e(i)];
101. y = subs(ytsol,vars,values);
102. subplot(2,2,i);
103. graph = plot(time, subs(y, t, time));
104. yline(.5);
105. ylabel('y(t)')
106. xlabel('time (hours)')
107. sgtitle('Glucose Level During Sleep');
108. subtitle(sprintf('Patient %d', i));
109.
110. end
111.
112. %% Part E
113.
114. numPatients = 4; %number of patients
115.
116. ygoal = 2; %goal glucose level
117. Kp = 500; %proportionality constant
118. Ki = 0; %integral constant
119. Kd = 300; %derivative constant
120. Gc = pid(Kp, Ki, Kd); %initiate pid controller
121. y_i = 1; %initial y value
122.
123. for i = 1:numPatients
124.
125. %create plots
126. w = linspace(0, 8 ,2000); %relevant frequency ranges
127. time = linspace(0, 8, 1000); %time range
128.
129. y_s = ((Kp*ygoal)/s + Kd*y_i - ((g(i)*0.01)/(s + a(i))) +

y_i)... / (e(i) + s + Kp + s*Kd + (g(i) * b(i))/(s + a(i)));
%derived Y(s)

130. q_s = (Kp*ygoal)/s - y_s*(Kp + s*Kd) + Kd*y_i;%derived Q(s)

131. q_t = ilaplace(q_s); %inverse laplace Q(s)
132. y_t = ilaplace(y_s); %inverse laplace Y(s)
133.
134. %plot
135. subplot(2,2,i);
136. graph = plot(time, subs(y_t, t, time));
137. yline(ygoal);
138. ylim([0 3.0]);
139. hold on;
140. plot(time, subs(q_t, t, time));
141. hold off;
142. xlabel('time (hours)')
143. sgtitle('Glucose Level [grams/L] and Rate of Glucose Injection

[g / (L * hr)]');
144. subtitle(sprintf('Patient %d', i));
145. legend("y(t): [Glucose] ", "q(t): Glucose Injection")
146. end
147.
148.
149. %% Part F
150.
151. numSimulations = 10;
152.
153. y_i = 0.5 + (3.5-0.5) .* rand(numSimulations,1);
154.
155. ygoal = 2; %goal glucose level
156. Kp = 500; %proportionality constant
157. Ki = 0; %integral constant
158. Kd = 300; %derivative constant
159. Gc = pid(Kp, Ki, Kd); %initiate pid controller
160.
161. for i = 1:numSimulations
162.
163. w = linspace(0, 8 ,2000); %relavent frequency ranges
164. time = linspace(0, 8, 1000); %time range
165.
166. y_s = ((Kp*ygoal)/s + Kd*y_i(i) - ((g(1)*0.01)/(s + a(1))) +

y_i(i))...
167. / (e(1) + s + Kp + s*Kd + (g(1) * b(1))/(s + a(1)));

%derived Y(s)
168. q_s = (Kp*ygoal)/s - y_s*(Kp + s*Kd) + Kd*y_i;%derived Q(s)
169. q_t = ilaplace(q_s); %inverse laplace Q(s)
170. y_t = ilaplace(y_s); %inverse laplace Y(s)
171.
172. %plot
173. subplot(1,1,1);
174. plot(time, subs(y_t, t, time),'b-');

175. hold on;
176. plot(time, subs(q_t, t, time),'r-');
177. yline(ygoal);
178. ylim([0 3.5]);
179. xlabel('time (hours)')
180. sgtitle('Glucose Level [grams/L] and Rate of Glucose Injection

[g / (L * hr)]');
181. subtitle(sprintf('Patient 1'));
182. legend("y(t): [Glucose] ", "q(t): Glucose Injection")
183.
184. end
185.
186. hold off;
187. %% Part G
188.
189. % Demo: Input values for alpha, beta, gamma, eta, and y_i
190.
191. % Inputs
192. y_i = 3;
193. a = 1.0;
194. b = 1.0;
195. g = 1.0;
196. e = 1.0;
197.
198. ygoal = 2; %goal glucose level
199. Kp = 500; %proportionality constant
200. Ki = 0; %integral constant
201. Kd = 300; %derivative constant
202. Gc = pid(Kp, Ki, Kd); %initiate pid controller
203.
204.
205. w = linspace(0, 8 ,2000); %relavent frequency ranges
206. time = linspace(0, 8, 1000); %time range
207.
208. y_s = ((Kp*ygoal)/s + Kd*y_i - ((g*0.01)/(s + a)) + y_i)...
209. / (e + s + Kp + s*Kd + (g * b)/(s + a)); %derived Y(s)
210. q_s = (Kp*ygoal)/s - y_s*(Kp + s*Kd) + Kd*y_i;%derived Q(s)
211. q_t = ilaplace(q_s); %inverse laplace Q(s)
212. y_t = ilaplace(y_s); %inverse laplace Y(s)
213.
214. %plot
215. subplot(1,1,1);
216. plot(time, subs(y_t, t, time),'b-');
217. hold on;
218. plot(time, subs(q_t, t, time),'r-');
219. yline(ygoal);
220. ylim([0 3.5]);

221. xlabel('time (hours)')
222. sgtitle('Glucose Level [grams/L] and Rate of Glucose Injection [g /

(L * hr)]');
223. subtitle(sprintf('Patient 1'));
224. legend("y(t): [Glucose] ", "q(t): Glucose Injection")
225.
226. %% Part H
227. syms s t
228. a = [2 0.8 0.7 0.9]; %Alpha
229. b = [0.00 0.01 0.00 0.00]; %Beta
230. g = [0.10 0.05 0.15 0.4]; %Gamma
231. e = [0.6 0.8 0.1 1.2]; %Eta
232. % Initial x_i values
233. x_i1 = 0.3;
234. x_i2 = x_i1 + 0.064; %0.064 = time to oscillate in the given window
235. x_i4 = x_i3 + 0.064; %even indexing because oscillations = every other
236. x_i6 = x_i5 + 0.064;
237. x_i8 = x_i7 + 0.064;
238. x_i10 = x_i9 + 0.064;
239. x_i12 = x_i11 + 0.064;
240. % laplace and plot
241. for i = 4
242. y_s = (1 - (0.01*g(i))) * ((s + a(i))/((g(i)*b(i))+

((s+e(i))*(s+a(i)))));
243. y_t = ilaplace(y_s,s,t);
244.
245. y_s2 = (3.2 - (0.01*g(i))) * ((s + a(i))/((g(i)*b(i))+

((s+e(i))*(s+a(i)))));
246. y_t2 = ilaplace(y_s2,s,(t-x_i2));
247.
248. y_s3 = (3.2 - (0.01*g(i))) * (s + a(i))/((g(i)*b(i))+

((s+e(i))*(s+a(i))));
249. y_t3 = ilaplace(y_s3,s,(t-x_i4));
250.
251. y_s4 = (3.2 - (0.01*g(i))) * ((s + a(i))/((g(i)*b(i))+

((s+e(i))*(s+a(i)))));
252. y_t4 = ilaplace(y_s4,s,(t-x_i6));
253.
254. y_s5 = (3.2 - (0.01*g(i))) * ((s + a(i))/((g(i)*b(i))+

((s+e(i))*(s+a(i)))));
255. y_t5 = ilaplace(y_s5,s,(t-x_i8));
256.
257. y_s6 = (3.2 - (0.01*g(i))) * ((s + a(i))/((g(i)*b(i))+

((s+e(i))*(s+a(i)))));
258. y_t6 = ilaplace(y_s6,s,(t-x_i10));
259.

260. y_s7 = (3.2 - (0.01*g(i))) * ((s + a(i))/((g(i)*b(i))+
((s+e(i))*(s+a(i)))));

261. y_t7 = ilaplace(y_s7,s,(t-x_i12));
262. subplot(2,2,i);
263. figure()
264. hold on
265. fplot(t,y_t,[0,x_i1],'b-')
266. fplot(t,50*(t-x_i1) + 0.7,[x_i1, x_i2],'b-');
267. fplot(t,y_t2,[x_i2, x_i3],'b-');
268. fplot(t,50*(t-x_i3) + 0.7,[x_i3, x_i4],'b-');
269. fplot(t,y_t3,[x_i4, x_i5],'b-');
270. fplot(t,50*(t-x_i5) + 0.7,[x_i5, x_i6],'b-');
271. fplot(t,y_t4,[x_i6, x_i7],'b-');
272. fplot(t,50*(t-x_i7) + 0.7,[x_i7, x_i8],'b-');
273. fplot(t,y_t5,[x_i8, x_i8+1.3],'b-');
274. fplot(t,50*(t-x_i9) + 0.7,[x_i9, x_i10],'b-');
275. fplot(t,y_t6,[x_i10, x_i10+1.3],'b-');
276. fplot(t,50*(t-x_i11) + 0.7,[x_i11, x_i12],'b-');
277. fplot(t,y_t7,[x_i12, x_i12+1.3],'b-');
278. ylim([0.7 3.2]);
279. title('Glucose Level Over Time for Patient 4','FontSize',15);
280. xlabel('Time (hours)');
281. ylabel('Glucose Level')
282. hold off
283. end
284.
285. %% PART I
286. hold off;
287.
288. numSimulations = 10;
289. y_i = 0.5 + (3.5-0.5) .* rand(numSimulations,1);
290. ygoal = 2; %goal glucose level
291. Kp = 1000; %proportionality constant
292. Ki = 0; %integral constant
293. Kd = 800; %derivative constant
294. Gc = pid(Kp, Ki, Kd); %initiate pid controller
295. for i = 1:numSimulations
296. w = linspace(0, 8 ,2000); %relavent frequency ranges
297. time = linspace(0, 8, 1000); %time range
298.
299. y_s_p = ((Kp*ygoal)/s + Kd*y_i - ((g(i) * (2.5/s) + g(i)*0.01)/(s +

a(i))) + y_i) / (e(i) + s + Kp + s*Kd + (g(i) * b(i))/(s + a(i)));
%derived Y(s) with a valid P(S)

300. q_s_p = (Kp*ygoal)/s - y_s_p*(Kp + s*Kd) + Kd*y_i;%derived Q(s)
301. q_t_p = ilaplace(q_s); %inverse laplace Q(s)
302. y_t_p = ilaplace(y_s_p); %inverse laplace Y(s)
303. %plot

304. subplot(1,1,1);
305. plot(time, subs(y_t_p, t, time),'b-');
306. hold on;
307. plot(time, subs(q_t_p, t, time),'r-');
308. yline(ygoal);
309. ylim([0 20.5]);
310. xlabel('time (hours)')
311. sgtitle('Glucose Level [grams/L] and Rate of Glucose Injection [g / (L

* hr)]');
312. subtitle(sprintf('Patient 1'));
313. legend("y(t): [Glucose] ", "q(t): Glucose Injection")
314. end
315. hold off;
316.

